US009047121B2

a2z United States Patent (10) Patent No.: US 9,047,121 B2
Moerman et al. 45) Date of Patent: Jun. 2, 2015
(54) SYSTEM AND METHOD FOR SCHEDULING (52) US.CL
JOBS IN A MULTI-CORE PROCESSOR CPC ........... GO6F 9/4843 (2013.01); GOGF 9/4881
(2013.01); GOGF 9/526 (2013.01); GO6F
(71)  Applicant: TEXAS INSTRUMENTS 2209/483 (2013.01); GOGF 2209/522 (2013.01)
INCORPORATED, Dallas, TX (US) (58) Field of Classification Search
None
(72) Inventors: Filip Moerman, Tourrettes-sur-Loup s .
(FR); Raphael Defosseus, See application file for complete search history.
Cagnes-sur-Mer (FR); Olivier Paviot, .
Biot (FR) (56) References Cited
. U.S. PATENT DOCUMENTS
(73) Assignee: TEXAS INSTRUMENTS
INCORPORATED, Dallas, TX (US) 2007/0011682 Al* 1/2007 Lobozetal. ......c.......... 718/104
2012/0072908 Al* 3/2012 Schrothetal. .................... 718/1
(*) Notice: Subject to any disclaimer, the term of this * cited b .
patent is extended or adjusted under 35 cited by examiner
US.C. 154(b) by 175 days. Primary Examiner — Emerson Puente
(21) Appl. No.: 13/776,276 Assistant Examiner — Steven Do
(74) Attorney, Agent, or Firm — Ronald O. Neerings; Frank
(22) Filed: Feb. 25, 2013 D. Cimino
(65) Prior Publication Data (57) ABSTRACT
US 2014/0245308 Al Aug. 28,2014 A multi-core processor, comprising a plurality of processor
cores to process jobs, a multicore navigator coupled to the
30) Foreign Application Priority Data plurality of processor cores to evaluate a job for atomicity
and, based on determining the job to have atomicity, to deter-
Feb. 25,2013  (EP) oo 13290038 mine whether there is an atomic wait queue associated with
the job’s atomicity. Based on there being an atomic wait
(51) Int.CL queue associated with the job’s atomicity, the multicore navi-
GOG6F 9/46 (2006.01) gator is to push the job to the atomic wait queue.
GO6F 9/48 (2006.01)
GOG6F 9/52 (2006.01) 17 Claims, 4 Drawing Sheets
600

RECEIVING JOBS INTO ONE OF A
PLURALITY OF READY QUEUES, WHERE
EACH READY QUEUE IS ASSOCIATED
WITH A DIFFERENT SCHEDULING PROFILE

|- 602

v

EVALUATING A JOB FOR ATOMICITY

|/ 604

v

BASED ON THE JOB HAVING ATOMICITY,
DETERMINING WHETHER THERE IS AN
ATOMIC WAIT QUEUE ASSOCIATED
WITH THE ATOMICITY OF THE JOB

| ~606

v

PUSHING THE JOB TO THE ASSOCIATED
ATOMIC WAIT QUEUE BASED ON THERE
BEING AN ATOMIC WAIT QUEUE
ASSOCIATED WITH THE JOB'S ATOMICITY

™-608

v

FORWARDING THE JOB TO ONE OF A
PLURALITY OF PROCESSOR CORES BASED
ON THERE BEING NO ATOMIC WAIT QUEUE

ASSOCIATED WITH THE JOB'S ATOMICITY

610




U.S. Patent

Jun. 2, 2015 Sheet 1 of 4 US 9,047,121 B2
100
| l ¥
[
MEMORY
SUBSYSTEM |.,|  CORES
106 104A-N
MULTICORE
.| NAVIGATOR
! 102
IIo
CONNECTIONS \
NETWORK
108A-N CO-PROCESSOR
- 110
|
FIG. 1
]
|
1
CORES
104A-N
A
Y
PACKET PACKET
ENGINE ACCELERATORS
202 204A-N
102
HARDWARE PACKET
QUEUES INTERFACES
208A-N 206A-N

FIG. 2



US 9,047,121 B2

Sheet 2 of 4

Jun. 2, 2015

U.S. Patent

N-V0l

S3”OO

v 'DId

o= ou coy <« su3onaoyd
S3N3ND AQVIY
90Y oY
(— —] [—
S3N3ND AQYIY DINOLY $3N3ND LIVM DIWOLY
¥31INAIHIS L3NoVd
- 00¥
N-V#0L | o Ol c0¢e < S¥3oNA0Hd
S3M02 S3N3ND AQYIY
$0€
$3N3ND AQYIY DINOLY
90¢
L] |ag—
S3N3ND LIVM DINOLY
¢ "DIA UINGIHOSIDIOVE [~y




US 9,047,121 B2

N-V¥0L
S0

.

809
S3N3ND AQY3IY 13TvavVd

205

$3N3aND AQv3Y

Sheet 3 of 4

Jun. 2, 2015

U.S. Patent

905

$3N3N0 AQY3d OINOLY

$3N3N0 LIVM JIWOLY

H371NA3HIS 13X10vd

¢ 'DIA

SY33NA0YUd




U.S. Patent Jun. 2, 2015 Sheet 4 of 4 US 9,047,121 B2

600

RECEIVING JOBS INTO ONE OF A

PLURALITY OF READY QUEUES, WHERE | 602
EACH READY QUEUE IS ASSOCIATED

WITH A DIFFERENT SCHEDULING PROFILE

'

EVALUATING A JOB FOR ATOMICITY | ~604

!

BASED ON THE JOB HAVING ATOMICITY,
DETERMINING WHETHER THERE ISAN | ~606
ATOMIC WAIT QUEUE ASSOCIATED
WITH THE ATOMICITY OF THE JOB

'

PUSHING THE JOB TO THE ASSOCIATED
ATOMIC WAIT QUEUE BASED ON THERE
BEING AN ATOMIC WAIT QUEUE - 608
ASSOCIATED WITH THE JOB'S ATOMICITY

'

FORWARDING THE JOB TO ONE OF A
PLURALITY OF PROCESSOR CORES BASED
ON THERE BEING NO ATOMIC WAIT QUEUE [-610

ASSOCIATED WITH THE JOB'S ATOMICITY

FIG. 6




US 9,047,121 B2

1
SYSTEM AND METHOD FOR SCHEDULING
JOBS IN A MULTI-CORE PROCESSOR

CROSS-REFERENCE TO RELATED
APPLICATION

The present application claims priority to European Patent
Application No. 13290038.2, filed on Feb. 25, 2013; which is
hereby incorporated herein by reference.

BACKGROUND

Before the days of multi-core processors, programming for
a single processor environment was fairly simple and straight
forward. At that time, a programmer may not have needed to
worry about processing order due to the single core complet-
ing all of the work. However, with the implementation of
multi-core processors, programmers had to manage the use of
the cores, programmers became more concerned with the
processing order of application threads since the threads
could be processed in parallel using the separate cores. The
necessity to track the threads was partially due to a lack of
multi-core runtimes that could manage the processing order
of jobs. This lack of order management results in high over-
heads.

The early multi-core used parallel and logical queues for
scheduling jobs. Scheduling in this fashion consumes over-
head because the application may be required to track the
order in which jobs are processed, as well as control access to
shared resources requiring the use of mutex locks. The use of
such locks consumes more overhead when a thread happens
to spin on a lock. Additionally, threads that require processing
in a precise order may potentially be processed out of order if
they are not queued or tracked properly, which may result in
lock-up. Therefore, a multi-core runtimes that allows pro-
grammers to write code as if programming for a single-core
processor while utilizing the full parallel processing of the
multi-core processor may be desirable.

SUMMARY

The problems noted above are solved in large part by a
multi-core processor, comprising a plurality of processor
cores to process jobs, a multicore navigator coupled to the
plurality of processor cores to evaluate a job for atomicity
and, based on determining the job to have atomicity, to deter-
mine whether there is an atomic wait queue associated with
the job’s atomicity. Based on there being an atomic wait
queue associated with the job’s atomicity, the multicore navi-
gator is to push the job to the atomic wait queue.

Other embodiments are directed toward a multicore navi-
gator comprising a packet engine to schedule jobs to be pro-
cessed by a plurality of processor cores coupled to the packet
engine. The packet engine is to receive jobs into one of a
plurality of ready queues, evaluate a job for atomicity, for-
ward a job with no atomicity to one of the plurality of pro-
cessor cores and, for a job with atomicity, determine whether
there is an atomic wait queue associated with the job’s atom-
icity. And, based on there being no atomic wait queue asso-
ciated with the job’s atomicity, forward the job to one of the
plurality of processor cores.

Another embodiment is directed toward a method for
scheduling atomic jobs comprising receiving jobs into one of
a plurality of ready queues, where each ready queue is asso-
ciated with a different scheduling profile, and evaluating, by
a packet engine, a job for atomicity. Based on the job having
atomicity, determining whether there is an atomic wait queue

10

15

20

25

30

35

40

45

50

55

60

65

2

associated with the atomicity of the job, and pushing, by a
packet engine, the job to the associated atomic wait queue
based on there being an atomic wait queue associated with the
job’s atomicity. And forwarding, by a packet engine, the job
to one of a plurality of processor cores based on there being no
atomic wait queue associated with the job’s atomicity.

BRIEF DESCRIPTION OF THE DRAWINGS

For a detailed description of exemplary embodiments of
the invention, reference will now be made to the accompany-
ing drawings in which:

FIG. 1illustrates an embodiment of a multi-core processor;

FIG. 2 illustrates an embodiment of a multicore navigator;

FIG. 3 illustrates an embodiment of a multi-core packet
engine;

FIG. 4 illustrates an alternative embodiment of a multi-
core packet engine;

FIG. 5 illustrates another alternative embodiment of a
multi-core packet engine; and

FIG. 6 illustrates a method for scheduling atomic jobs in a
multi-core processing environment.

NOTATION AND NOMENCLATURE

Certain terms are used throughout the following descrip-
tion and claims to refer to particular system components. As
one skilled in the art will appreciate, companies may refer to
a component by different names. This document does not
intend to distinguish between components that differ in name
but not function. In the following discussion and in the
claims, the terms “including” and “comprising” are used in an
open-ended fashion, and thus should be interpreted to mean
“including, but not limited to . . . ” Also, the term “couple” or
“couples” is intended to mean either an indirect or direct
electrical connection. Thus, if a first device couples to a
second device, that connection may be through a direct elec-
trical connection, or through an indirect electrical connection
via other devices and connections.

As used herein, the term “producer” refers to the originator
of'ajob for processing and the producer may submit the job to
amulti-core processor. The producer may refer to a (typically
but not limited to programmable) core of the multi-core pro-
cessor orto a thread of an application running on the core. The
producer may also refer to an actor outside the multi-core
processor

As used herein, the term “consumer” refers to a (typically
but not limited to programmable) core of a multi-core pro-
cessor, which may process a job using an execution object or
to a thread of an application running on the core.

As used herein, the terms “atomicity” and “atomic job”
refer to a characteristic of a job in which processing jobs of
the same atomicity in parallel should be avoided, if possible.

DETAILED DESCRIPTION

The following discussion is directed to various embodi-
ments of the invention. Although one or more of these
embodiments may be preferred, the embodiments disclosed
should not be interpreted, or otherwise used, as limiting the
scope of the disclosure, including the claims. In addition, one
skilled in the art will understand that the following descrip-
tion has broad application, and the discussion of any embodi-
ment is meant only to be exemplary of that embodiment, and
not intended to intimate that the scope of the disclosure,
including the claims, is limited to that embodiment.



US 9,047,121 B2

3

Multi-core processors allow for enhanced processing of
applications due to their parallel processing capabilities, but
only when applications or operating systems efficiently uti-
lize the separate processing cores. Currently, programmers
may either have to rely on operating systems for core man-
agement, but these operating systems may not be designed for
multi-core processor environments or meet the performance
goals of applications involving a high number of light-weight
jobs. Else, the programmers may need to manage the cores
and the processing order of threads within their applications
to fully harness the processing power of a multi-core proces-
sor. In either instance, however, the computing overhead may
be high and the overall efficiency may suffer if scheduling the
jobs on the multiple cores is not properly managed. A multi-
core focused runtime may help alleviate these problems. A
scheduling component of the new multi-core runtime may be
designed to manage and track all jobs queued for processing
without programmers needing to perform those functions.

The scheduler component of the new runtime may track
and schedule jobs that are sent to it by producers. A producer
may either be software running on another core generating
jobs or a piece of hardware generating jobs, for example an
image sensor or accelerometer. In either instance, the pro-
ducer may only need to determine what ready queue a job
should be placed based on a scheduling profile without requir-
ing to identify a consumer or to determine the state of an
atomicity. Using a single queue per scheduling profile sim-
plifies job submissions for producers. The scheduler may
evaluate jobs at the head of the ready queue when a core
requests a job before forwarding the job to the requesting
core. Evaluating the job may be necessary to ensure process-
ing order is maintained. The scheduler may evaluate the jobs
for priority, atomicity, and locality. Priority may be desig-
nated by a quality of service characteristic and locality may
require the job to be processed by a specific core or a specific
group of cores. Atomicity may denote jobs that are to be
processed serially.

Atomic jobs may involve extra handling and possibly stor-
age due to the nature of atomicity. It may be necessary to
prevent jobs of the same atomicity from being processed in
parallel. Thus, the scheduler may ensure that atomic jobs of
the same atomicity are not processed in parallel. Due to such
a constraint, the scheduler may track all atomic jobs from
receipt and evaluation through processing by a core. Manag-
ing and tracking the atomic jobs is but one aspect of the
scheduler and one that may make programming applications
that require atomicity simpler.

Disclosed herein are systems and methods for scheduling
atomic jobs in a multi-core processor environment. The
scheduler may receive jobs into one of a plurality of ready
queues where each ready queue is associated with a different
scheduling profile. The scheduling profile may be based on
priority and locality. Upon receiving a request for a job from
a consumer, the scheduler first selects a scheduling profile
based on a scheduling policy. The scheduler then looks at an
atomic ready queue to see if it holds an end-of-atomic pro-
cessing notification. The scheduler, then, if the atomic ready
queue is empty, analyzes the first job in the ready queue
associated with the selected scheduling profile for atomicity.
Ifthe job has no associated atomicity, the scheduler forwards
the job to the requesting consumer. However, if the job is
atomic, the scheduler may perform further analysis to deter-
mine if the atomic job can be forwarded to the consumer or if
the atomic job should be placed into an atomic wait queue.
Further analysis is required because it may be best to avoid
processing two atomic jobs of the same atomicity in parallel.

10

15

20

25

30

35

40

45

50

55

60

65

4

However, there may be no constraint to processing two
atomic jobs of different atomicity in parallel.

There may be various situations encountered by the sched-
uler when faced with an atomic job in the ready queue. The
scheduler may first determine if an atomic wait queue has
been allocated for the atomic job’s atomicity. If no atomic
wait queue has been allocated, the scheduler may forward the
atomic job to the requesting consumer and may also dynami-
cally allocate an atomic wait queue associated for that atom-
icity thereby locking that atomicity. On the other hand, if an
atomic wait queue associated with the job’s atomicity has
already been allocated, then the scheduler may push the
atomic job to the associated atomic wait queue.

If, however, the atomic ready queue held an end-of-atomic
processing notification, the scheduler may evaluate the noti-
fication before looking at the ready queue. The scheduler may
look at the atomic wait queue associated with the atomicity of
the notification. If the atomic wait queue holds an atomic job,
the atomic job may be forwarded to the requesting consumer.
If, however, the atomic wait queue is empty, the scheduler
may de-allocate the atomic wait queue, which effectively
unlocks that atomicity. Additionally, the scheduler may
evaluate the job at the head of the ready queue for atomicity.

Once a consumer finishes processing an atomic job or at
least all processing that is covered by the atomicity, the con-
sumer may notify the scheduler that the atomic processing is
complete. The notification denotes end-of-atomic processing
and is associated with the atomicity of the atomic job the
consumer is or just finished processing. The scheduler may
then push the end-of-atomic processing notification into an
atomic ready queue. The end-of-atomic processing informs
the scheduler that an atomic job has finished the part of its
processing that is covered by its atomicity and that another
atomic job of the same atomicity may now be processed.

FIG. 1 illustrates an embodiment of a multi-core processor
100. Multi-core processor 100 comprises a multicore naviga-
tor 102, multiple cores 104A-N, a memory subsystem 106, a
number of input/output (/O) connections 108A-N, and a
network co-processor 110. The multicore navigator 102 may
schedule and track jobs to be processed by the multiple cores
104 A-N. The memory subsystem 106 may be utilized to hold
applications and data to be processed and may be used to store
data generated from the multiple cores 104A-N. The number
of 1/O connections 108A-N may be used to receive data for
processing by the multiple cores 104A-N and may also be
used to transmit data from the multiple cores 104A-N after
processing. The network co-processor 110 may be used to
transmit and receive data over Ethernet.

The multicore navigator 102 may be used to schedule the
processing of jobs on the multiple cores 104A-N. Addition-
ally, the multicore navigator 102 may allocate queues for
atomic jobs, hereinafter denoted as atomic wait queues.
Those same atomic wait queues may also be de-allocated by
multicore navigator 102 when they are no longer required. At
any one time, there may be thousands or millions of different
atomicities, but only a few that are locked at any instant. Static
allocation of atomic wait queues (one per atomicity) would
require thousands or millions of atomic wait queues.
Dynamic allocation (allocated when atomicity becomes
locked, freed when atomicity becomes unlocked), on the
other hand, may resultin only a few atomic wait queues at any
given instant. The scheduler may know that no other atomic
job of that atomicity is currently being processed if no atomic
wait queue has been allocated for that atomicity. If the atomic
wait queue has already been allocated, the scheduler may then
know that the atomicity of the atomic job is locked. A locked



US 9,047,121 B2

5

atomicity implies that no job of that atomicity may be pro-
cessed. Unlocking the atomicity allows processing of jobs of
that atomicity to resume.

The multicore navigator 102 may receive jobs via the [/O
connections 108A-N, from the memory subsystem 106, via
the network co-processor 110, or from the cores 104A-N.
Regardless of the origin of a job, jobs may go into one of a
plurality of ready queues before they are evaluated and sched-
uled. Each of the plurality of ready queues may be associated
with a different scheduling profile. Additionally, each ready
queue will have an associated atomic ready queue, but the
atomic ready queue may not be associated with any specific
atomicity. Producers, in this implementation, may only need
to locate the correct ready queue without needing to worry
about the state of a core or of an atomicity because the mul-
ticore navigator 102 may track such specifics. The state of an
atomicity may refer to whether or not the atomicity is locked.

The multicore navigator 102 may lock an atomicity by
allocating an atomic wait queue associated with that atomic-
ity. The locking of atomicity may occur due to the need to
prevent atomic jobs of the same atomicity from being pro-
cessed in parallel. Conversely, the multicore navigator 102
may unlock atomicity when no atomic job of that atomicity is
being processed by de-allocating an associated atomic wait
queue. Before unlocking the atomicity, the multicore naviga-
tor 102 may determine if there are any atomic jobs in the
atomic wait queue. If the atomic wait queue is empty, the
multicore navigator 102 may then de-allocate the atomic
queue.

In accordance with various embodiments, the multicore
navigator 102 may receive a request for a job from a core,
such as core 104B. Upon receiving the request, the multicore
navigator 102 may first select a scheduling profile. Alterna-
tively, the core may specify a scheduling profile when
requesting a job. After selection of the scheduling profile, the
multicore navigator 102 may first determine if an atomic
ready queue holds an end-of-atomic processing notification.
If the atomic ready queue is empty, the multicore navigator
102 may then evaluate the job at the head of the ready queue
for atomicity.

In accordance with various embodiments, upon receiving a
request for a job form a core, the multicore navigator 102 may
first select all scheduling profiles associated with the locality
that matches the requesting core. Out of all of those profiles,
the multicore navigator 102 may then select all scheduling
profiles that have a non-empty ready queue or a non-empty
atomic ready queue or both. The multicore navigator 102 may
then select the scheduling profile with the highest priority out
of'the non-empty queues. Thus, once the scheduling profile is
selected down to a single profile, the multicore navigator 102
may select a notification out of the atomic ready queue if it is
not empty, else the multicore navigator 102 may select a job
from the ready queue.

If'the job has no atomicity, the multicore navigator 102 may
then forward the job to the requesting core. If the job has
atomicity, the multicore navigator 102 may then determine if
an atomic wait queue has been allocated for that job’s atom-
icity. If an atomic wait queue associated with that atomicity
has already been allocated, then the multicore navigator 102
may then push the atomic job to the atomic wait queue. If the
multicore navigator 102 determines that there is no atomic
wait queue allocated for the atomic job’s atomicity, then the
multicore navigator 102 may forward the atomic job to the
requesting core. Additionally, the multicore navigator 102
may allocate an atomic wait queue associated with the atom-
icity of the atomic job.

10

15

20

25

30

35

40

45

50

55

60

65

6

Once a core finishes processing an atomic job or at least all
processing that is covered by the atomicity, the core may send
the multicore navigator 102 an end-of-atomic processing
notification. The multicore navigator 102 may then push the
notification into the atomic ready queue associated with the
scheduling profile of the ready queue. End-of-atomic pro-
cessing notifications, upon being evaluated by the multicore
navigator 102, may inform the multicore navigator that
another job of the same atomicity may now be processed.

In accordance with various embodiments, when the multi-
core navigator 102 determines that the atomic ready queue
associated with the chosen scheduling profile contains an
end-of-atomic processing notification, the multicore naviga-
tor 102 will evaluate the notification before looking to the
ready queue for that scheduling profile. The multicore navi-
gator 102 evaluates the notification by determining if the
atomic wait queue of the same atomicity of the notification
holds an atomic job. If the atomic wait queue holds an atomic
job, that atomic job is forwarded to the requesting core. If,
however, the atomic wait queue is empty, then the multicore
navigator 102 may de-allocate the atomic wait queue before
turning to the ready queue for a job.

FIG. 2 illustrates an embodiment of the multicore naviga-
tor 102 coupled to the cores 104 A-N. The multicore navigator
102 may be located in a multi-core processor environment on
its own chip or as a sector of a multi-core processor chip. The
multicore navigator 102 comprises packet engine 200, packet
accelerators 204A-N, packet interfaces 206A-N and hard-
ware queues 208A-N. The packet accelerators 204A-N and
the packet interfaces 206A-N may assist with Ethernet packet
processing operations. The hardware queues 208A-N may be
used for ready queues, atomic ready queues, and atomic wait
queues, where the atomic wait queues may be dynamically
allocated and de-allocated by the packet engine 200. The
packet engine 202 may be used for scheduling jobs to be
processed by one of the cores 104A-N coupled to the multi-
core navigator 102. To support high job throughput, a multi-
core processor may have multiple packet engines to schedule
jobs.

The packet engine 202 may schedule all jobs to be pro-
cessed by the cores 104A-N much in the same as multicore
navigator 102 schedules jobs, discussed above in reference to
FIG. 1. The packet engine may receive requests for jobs from
cores, such as core 104A, or it may track the locked state of
each atomicity and forward jobs to a core if atomicity is not
locked. In various other embodiments, the packet engine 202
may only track atomic jobs. The tracking of atomic jobs may
be required so that the packet engine 202 is able to prevent
atomic jobs of the same atomicity from being processed in
parallel, if necessary. Additionally, the packet engine 202
may also be required to allocate and de-allocate atomic wait
queues for each atomicity received. The atomic wait queues
may be allocated in hardware queues 208 A-N.

Being able to allocate and de-allocate atomic wait queues
as needed may allow all necessary atomic queues to be imple-
mented in hardware queues, such as hardware queues 208 A-
N, within the multicore navigator 102. The use of hardware
queues for the atomic wait queues may have several advan-
tages—low latency when retrieving queued jobs for a core,
reduced computing overhead when retrieving and forwarding
jobs, and atomic push and pop operations that do not require
mutex locks—over queues implemented by software using
logical or parallel queue techniques and stored in memory
located outside of the multi-core processor environment.

Since the atomic queues are allocated in on-chip hardware,
there may be a limited number of queues allocate-able at any
one time. By allocating and de-allocating atomic queues as



US 9,047,121 B2

7

needed, the packet engine 202 may efficiently use the hard-
ware queues 208 A-N and may allow all queues to be allocated
in the hardware queues 208A-N.

FIG. 3 illustrates an embodiment of a multi-core packet
engine 300. The packet engine 300 comprises one or more
ready queues 302, one or more atomic ready queues 304, and
one or more atomic wait queues 306. The packet engine 300
may receive jobs from producers and may forward jobs to
cores 104A-N. The packet engine 300 may be implemented
asynchronously in a multi-core processor’s multicore navi-
gator so that the packet engine 300 operates on a separate
piece of hardware form each core, as shown in FIG. 1. Alter-
natively or additionally, the packet engine 300 may be imple-
mented synchronously so that it operates within each core of
a multi-core processor. The packet engine 300 may also be
used by a multi-core runtime to maintain a status of all atomic
jobs and their atomicity.

The packet engine 300 may use the one or more ready
queues 302 to receive all incoming jobs from producers with
each ready queue 302 associated with a different scheduling
profile. The packet engine 300 may use atomic ready queues
to hold end-of-atomic processing notifications sent by a core,
such as core 104 A, upon finishing the processing of an atomic
job or at least all processing that is covered by the atomicity
associated with that job. Each scheduling profile will have
one associated atomic ready queue, so that there are as many
atomic ready queues as there are scheduling profiles. The
scheduler may guarantee that atomic jobs of the same atom-
icity are not processed in parallel by implementing atomic
wait queues, such as atomic wait queues 306. The multiple
atomic wait queues shown in FIG. 3 are for illustration pur-
poses only and the number of atomic wait queues at any one
time may vary. However, the number of atomic wait queues
may be bounded by the number of consumers or cores of the
multi-core processor. Alternatively, the number of atomic
wait queues may be bounded by two times the number of
cores and potentially further bounded by two times the num-
ber of cores times the number of priorities.

The packet engine 300 may dynamically allocate and de-
allocate atomic wait queues as it is scheduling jobs. Atomic
wait queues may allow the packet engine 300 to guarantee
atomic jobs are processed serially. The packet engine 300
may lock atomicity while an atomic job of that atomicity is
being processed, thereby satistying the guarantee. By locking
atomicity, no other job of that atomicity may be processed
until the atomicity is unlocked. The ability of scheduler 300 to
lock atomicity may also allow programmers access to shared
resources without using mutex locks.

The packet engine 300 receives jobs into the one or more
ready queues 302 from producers. Upon receiving a request
for a job from a core, such as core 104 A, the packet engine
300 may first choose a scheduling profile. After selecting a
scheduling profile, the packet engine 300 may determine if
the atomic ready queue, such as one of the atomic ready
queues 304, associated with that scheduling profile holds an
end-of-atomic processing notification. If the atomic ready
queue is empty, the packet engine 300 may then analyze the
job at the head of the ready queue 302 of the chosen sched-
uling profile. The packet engine 300 may then analyze the job
for atomicity. If the job has no associated atomicity, the job
may be forwarded to the requesting core without constraint.

If'the job is determined to be atomic, the packet engine 300
may then perform further analytical steps before either for-
warding the atomic job to the requesting core or queuing the
atomic job. The first step performed by the packet engine 300
may be to determine if an atomic wait queue, such as one of
the atomic wait queues 306, associated with that atomic job’s

10

15

20

25

30

35

40

45

50

55

60

65

8

atomicity has been allocated. If no atomic wait queue for that
atomicity has been allocated, the packet engine 300 may then
know that no other atomic job of the same atomicity has been
received or is currently being processed. As such, the packet
engine 300 may forward the atomic job to the consumer
without violating any atomicity requirements.

After the atomic job is forwarded to the consumer, or
concurrently with forwarding the atomic job, the packet
engine 300 may also allocate an atomic wait queue for that
atomicity, such as one of the atomic wait queues 306. The
allocation of an atomic wait queue for that atomicity is carried
out by the packet engine 300 so that if more atomic jobs ofthe
same atomicity are received while the current atomic job is
being processed, the packet engine 300 may have an atomic
wait queue ready in which to hold them. The packet engine
300 may need to store atomic jobs of that atomicity so thatthe
atomic jobs are not processed in parallel, but may be pro-
cessed in the correct order. The packet engine 300 is designed
to lock the atomicity associated with an atomic job while the
atomic job is being processed so that no other jobs of that
atomicity may be processed concurrently.

In accordance with various embodiments, if the packet
engine 300 determines that an atomic wait queue for that
atomic job has already been allocated, the scheduler 300 then
knows that another atomic job of that atomicity is currently
being processed. As such, the atomic job is pushed from the
ready queue 302 of the chosen scheduling profile to one of the
atomic wait queue 306 associated with the atomic job’s ato-
micity.

Further, upon receiving a request for a job, if the packet
engine 300 determines the atomic ready queue contains a
notification, the packet engine 300 may then determine if the
atomic wait queue associated with that notification contains
another atomic job. If the wait queue holds another atomic
job, then the packet engine forwards an atomic job to the
requesting core. On the other hand, if the atomic wait queue
does not contain another atomic job, then the packet engine
300 may de-allocate the atomic wait queue before, concur-
rently, or after evaluating a job in the ready queue in response
to the request.

As the packet engine 300 makes all of these determinations
and allocations, it may keep track of all the atomic jobs so that
no atomic jobs of the same atomicity are processed in parallel.
The packet engine 300 may also have multiple atomic wait
queues at any one time, but each atomic wait queue may only
be associated with a single atomicity.

While a core is processing an atomic job or after the core
has finished processing an atomic portion of a job, the core
may send the packet engine 300 an end-of-atomic processing
notification. The packet engine 300 may push the notification
into the atomic ready queue associated with that scheduling
profile. In addition to the notification, the core may also be
requesting another job to process. Alternatively, the core may
send the request before sending the notification or after send-
ing the notification. The packet engine 300 may first push the
end-of-atomic processing notification to an atomic ready
queue associated with that scheduling profile. If the request is
sent before (or together with) the notification and if the asso-
ciated atomic wait queue is not empty, the packet engine 300
may pop a job from the atomic wait queue and forward it to
the requesting consumer. The following notification from the
requesting consumer may then be discarded. Of course, the
packet engine 300 may prefer to pop a job from a ready queue
or a notification from an atomic ready queue according to the
prevailing rules for selecting a scheduling profile.

In accordance with various embodiments, the packet
engine 300 may allocate and implement counters associated



US 9,047,121 B2

9

with each allocated atomic wait queue. The associated
counter may store two values—a run count and a max count.
The run count may be initialized to zero and the max count
may be initialized to a valued provided by the associated
atomicity. Then, the packet engine 300 may forward an
atomic job to a requesting core if either there is no associated
atomic wait queue or there is an atomic wait queue and the run
count is less than the max count. The packet engine 300 may
de-allocate an atomic wait queue if the atomic wait queue is
empty and the associated run count equals zero. The atomic
run count may increment each time as associated atomic job
is forwarded to a requesting core and decrement each time as
associated notification is processed.

FIG. 4 illustrates an alternative embodiment of a multi-
core packet engine 400. The packet engine 400 comprises one
ready queue 402 per scheduling profile, one or more atomic
wait queues 404, and one atomic ready queue 406 per sched-
uling profile. The packet engine 400 receives jobs from pro-
ducers and forwards jobs to the cores 104 A-N.

In accordance with various embodiments, the packet
engine 400 may receive a request for a job from one of the
cores 104A-N. When responding to a request, the packet
engine 400 may first select a scheduling profile based on a
scheduling policy. Once a scheduling profile is selected, the
packet engine 400 may then determine if the atomic ready
queue 406 for that scheduling profile contains an atomic job.
If the atomic ready queue 406 for that scheduling profile
contains a job, the job is popped by the packet engine 400 and
forwarded to the requesting core, such as core 104B. If, how-
ever, the atomic ready queue 406 for that scheduling profile
does not hold an atomic job, then the packet engine 400
evaluates a job at the head of the scheduling profile’s ready
queue for atomicity. If the job is non-atomic, the packet
engine 400 may then forward the job to the requesting core.

On the other hand, if the job at the head of the ready queue
is atomic, then the packet engine 400 may follow many ofthe
same steps as discussed above and performed by the multi-
core navigator 102 and the packet engine 300 in reference to
FIGS. 1, 2, and 3.

In accordance with this embodiment, upon receiving an
end-of-atomic processing from a core, the packet engine 400
may evaluate the atomic wait queue associated with the noti-
fication’s atomicity to determine if the atomic wait queue
holds an atomic job. If the atomic wait does hold an atomic
job, then the packet engine 400 may push the atomic job from
the atomic wait queue, such as atomic wait queue 404 A, to an
atomic ready queue associated with the same scheduling pro-
file, such as atomic ready queue 406 A. If, however, the atomic
wait queue is empty, the packet engine 400 may de-allocate
the atomic wait queue effectively unlocking that atomicity.

FIG. 5 illustrates yet another alternative embodiment of a
multi-core packet engine, such as packet engine 500. The
packet engine 500 comprises one ready queue 502 per sched-
uling profile, one or more atomic wait queues 504, one atomic
ready queue 506 per scheduling profile, and one parallel
ready queue 508 per scheduling profile. The one parallel
ready queue 508 per scheduling profile may be used to hold
non-atomic jobs after they have been evaluated by the packet
engine 500. The one parallel ready queue 508 per scheduling
profile may also hold atomic jobs that may be processed
without waiting. As such, for each scheduling profile, there
may be an associated ready queue 502, an associated atomic
ready queue 506, and an associated parallel queue 508. Fur-
thermore, for each scheduling profile there may be a dynami-
cally varying number of atomic wait queues depending on the
number of atomicities locked at any one time.

10

15

20

25

30

35

40

45

50

55

60

65

10

Inaccordance with this embodiment, the packet engine 500
performs much in the same way as the packet engine 400
performs, but with some added evaluation and job movement
steps performed in the background and in addition to
responding to requests for jobs from cores. The packet engine
500 may be continuously evaluating jobs received into the
ready queues without receiving a request for a job from one of
the cores 104A-N.

Upon receiving jobs into the ready queues 502, the packet
engine 500 may evaluate them for atomicity. The jobs that are
not atomic are pushed into the parallel ready queue associated
with the same scheduling profile as the ready queue from
which the job was received into. For jobs that are determined
to be atomic, the packet engine 500 may first determine if
there is an atomic wait queue associated with the job’s atom-
icity. If there is an atomic wait queue for that atomicity, the
packet engine 500 may push the atomic job to the associated
atomic wait queue. If, however, the packet engine 500 deter-
mines there is no atomic wait queue associated with the job’s
atomicity, then the packet engine 500 may push the atomic job
to the parallel ready queue and allocate an atomic wait queue
for that job’s atomicity.

Alternatively or additionally, if the packet engine 500
determines there is no atomic wait queue associated with the
job’s atomicity, then the packet engine 500 may wait until an
atomic wait queue becomes available before pushing the
atomic job to the parallel ready queue. Due to the atomic wait
queues being implemented in hardware queues, which have a
finite number of queues, the packet engine 500 may suspend
the background evaluation process once all of the available
atomic wait queues have been allocated. The packet engine
500 may then resume the background evaluation process once
atomic wait queues have been released and are available to be
allocated for a different atomicity.

In accordance with various embodiments, the packet
engine 500 may receive a request for a job from one of the
cores 104A-N. Upon receiving the request, the packet engine
500 may first select a scheduling profile similar to how the
packet engine 400 selects a scheduling profile. Once the
packet engine 500 narrows down to a single scheduling pro-
file, the packet engine 500 may first pop a job from the
associated atomic ready queue if it is not empty. Otherwise,
the packet engine 500 may pop a job form the associated
parallel ready queue, if it is not empty. The packet engine 500
may then forward the popped job to the requesting core. The
selection and forwarding of jobs to the requesting cores can
be separated from the process of evaluating jobs received into
the ready queues for atomicity. For example, the packet
engine 500 may run the job selecting and forwarding steps
synchronously while the job evaluation for atomicity steps
are run asynchronously.

FIG. 6 illustrates a method for scheduling atomic jobs in a
multi-core processing environment. The method 500 begins
at step 602 with receiving jobs into one of a plurality of ready
queues, where each ready queue is associated with a different
scheduling profile. The method 600 continues at step 604
with evaluating a job for atomicity, similar to the evaluation
processes that the multicore navigator 102 performs. The
method 600 then continues at step 606 with, based on the job
having atomicity, determining whether there is an atomic wait
queue associated with the atomicity of the job. The method
600 then continues at step 608 with pushing the job to the
associated atomic wait queue based on there being an atomic
wait queue associated with the job’s atomicity. Lastly, the
method 600 ends at step 610 with forwarding the job to one of
a plurality of processor cores based on there being no atomic
wait queue associated with the job’s atomicity.



US 9,047,121 B2

11

The above discussion is meant to be illustrative of the
principles and various embodiments of the present invention.
Numerous variations and modifications will become apparent
to those skilled in the art once the above disclosure is fully
appreciated. It is intended that the following claims be inter-
preted to embrace all such variations and modifications.

What is claimed is:
1. A multi-core processor, comprising:
a plurality of processor cores to process jobs;
a multicore navigator coupled to the plurality of processor
cores to evaluate a job for atomicity and, based on deter-
mining the job to have atomicity, determine whether
there is an atomic wait queue associated with the job’s
atomicity;
based on there being an atomic wait queue associated with
the job’s atomicity, the multicore navigator pushes the
job to the atomic wait queue;
based on no atomic wait queue being associated with the
job’s atomicity, the multicore navigator forwards the
atomic job to one of the plurality of processor cores and
allocates an atomic wait queue associated with the job’s
atomicity;
wherein the multicore navigator, based on the job having
no atomicity, forwards the job to one of the plurality of
processor cores.
2. The multi-core processor of claim 1, wherein the multi-
core navigator receives jobs into one of a plurality of ready
queues.
3. The multi-core processor of claim 1, wherein the multi-
core navigator evaluates the job upon receiving a request from
one of the plurality of processor cores.
4. The multi-core processor of claim 1, wherein the multi-
core navigator receives an end of atomic notification from one
of the plurality of processor and pushes the notification to an
atomic ready queue.
5. The multi-core processor of claim 1, wherein, the mul-
ticore navigator polls the atomic ready queue for a notifica-
tion before evaluating a job from the ready queue.
6. A multicore navigator, comprising:
a packet engine to schedule jobs to be processed by a
plurality of processor cores coupled to the packet
engine, wherein the packet engine:
receives jobs into one of a plurality of ready queues;
evaluates a job for atomicity;
forwards a job with no atomicity to one of the plurality of
processor cores;

for a job with atomicity, determines whether there is an
atomic wait queue associated with the job’s atomicity
and, based on there being no atomic wait queue asso-
ciated with the job’s atomicity, forward the job to one
of the plurality of processor cores;

wherein the packet engine pushes the job to the atomic
wait queue based on there already being an atomic
wait queue associated with the job’s atomicity; and

wherein the packet engine allocates an atomic wait
queue for the job’s atomicity based on no atomic wait
queue having already been allocated for the job’s
atomicity.

7. The multicore navigator of claim 6, wherein the packet
engine receives a notification from one of the plurality of
processor cores to indicate end-of-atomic processing and the
notifications are pushed into an atomic ready queue.

10

15

20

25

30

35

40

50

55

60

12

8. The multicore navigator of claim 6, wherein the jobs in
the ready queue and notifications in the atomic ready queue
are evaluated by the packet engine upon receiving a request
for a job from one of the plurality of processor cores.

9. The multicore navigator of claim 6, wherein the packet
engine, based on there being a notification in the atomic ready
queue, evaluates the notification in the atomic ready queue
before evaluating a job in the ready queue, and the packet
engine determines if there is an atomic job in the atomic wait
queue associated with the notification.

10. The multicore navigator of claim 9, wherein the packet
engine, based on there being an atomic job in the atomic wait
queue associated with the notification, forwards the atomic
job to the requesting core.

11. The multicore navigator of claim 9, wherein the packet
engine, based on there not being an atomic job in the atomic
wait queue associated with the notification, forwards a job
from the ready queue to the requesting core.

12. The multicore navigator of claim 9, wherein the packet
engine, based on there not being an atomic job in the atomic
wait queue associated with the notification, de-allocates the
atomic wait queue.

13. A method for scheduling atomic jobs, comprising:

receiving jobs into one of a plurality of ready queues,

where each ready queue is associated with a different
scheduling profile;

evaluating, by a packet engine, a job for atomicity;

based on the job having atomicity, determining whether

there is an atomic wait queue associated with the atom-
icity of the job;
pushing, by a packet engine, the job to the associated
atomic wait queue based on there being an atomic wait
queue associated with the job’s atomicity; and

forwarding, by a packet engine, the job to one of a plurality
of processor cores based on there being no atomic wait
queue associated with the job’s atomicity;

allocating, by a packet engine, a new atomic wait queue for

the atomic job in a hardware queue based on no atomic
wait queue associated with the job’s atomicity already
having been allocated; and

wherein the job is forwarded to one of the plurality of

processor cores based on the job having no atomicity.

14. The method of claim 13, wherein the job is evaluated
upon receiving a request for a job from one of the plurality of
processor cores.

15. The method of claim 13, further comprising:

receiving, by a packet engine, an end-of-atomic processing

notification from one of the plurality of processor cores
and pushing the notification to an atomic ready queue.

16. The method of claim 13, further comprising:

based on receiving the end-of-atomic processing notifica-

tion, determining, by a packet engine, whether the
atomic wait queue associated with the atomic job con-
tains any more atomic jobs and, based on the atomic
queue containing at least one other atomic job, pushing
an atomic job to the front of the ready queue.

17. The method of claim 13, further comprising:

based on the atomic queue containing no more atomic jobs,

de-allocating, by a packet engine, the atomic wait queue
after receiving the end-of-atomic processing notification
and after evaluating the atomic ready queue upon receiv-
ing a request for a job from a core.

#* #* #* #* #*



